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Abstract—Reinforcement learning has numerous applications
for the testing and analysis of video game content. However,
deploying it in existing games is a challenging engineering effort,
requiring suitable representations of states, actions, and rewards
based on the game rules. We propose using the program analysis
technique of symbolic execution on the game code to automati-
cally determine a precise action model when deploying reinforce-
ment learning in existing games. Our technique automatically
computes appropriate discrete action spaces for games, including
action masks indicating the validity of actions depending on the
agent’s current state. We conduct a comprehensive evaluation
of the technique on a varied dataset of seven Unity games with
the Proximal Policy Optimization (PPO) and Deep Q Learning
(DQN) deep reinforcement learning approaches. The results
show that the agents using the analysis significantly out-perform
those using generic action spaces covering the input device, and
perform on par with those using manually specified action spaces.

Index Terms—reinforcement learning, program analysis, game
testing

I. INTRODUCTION

Reinforcement learning has found many applications for
game development. It can be used to deploy agents that play
through [1] or explore [2]–[5] games, complement script-based
testing [6], [7], and evaluate game designs [8], [9].

Given the many use cases of reinforcement learning for
games, it is desirable to make it easy for game developers
to adopt or experiment with it for their games. However,
deploying reinforcement learning in existing games, which
may not necessarily have been designed with it in mind, is
a difficult technical challenge [6], [10]. Its use requires that
a suitable model of states, actions, and rewards is available
for the game. Typical game development practices with game
engines such as Unity or Unreal Engine do not make such
models available by default. Because of this, the deployment of
reinforcement learning requires either a non-trivial engineering
effort to enable agents to interact with the game, or the use of
imprecise generic models that are more difficult to train with
or give poor performance.

One of the key requirements of reinforcement learning is
a specification of the available actions for agents to take in
the game. This is commonly formulated as an action space,

which defines the set of actions that can be taken by the agents.
In typical game engines, the available player actions are
implicitly defined by the behavior of the user input handling
logic in the game code. Therefore, there is no direct way
to query the available actions, and deploying reinforcement
learning requires the developer to make a decision about
defining the action space. The specification of the action space
can be crucial to the performance of reinforcement learning.
Prior works on action space shaping [11] and action masking
[12] have shown that imprecise or unnecessary actions can
result in worse agent performance.

Existing work takes a variety of approaches to defining an
appropriate action space for games. A common approach is
for the developer to use their expertise with the game and its
codebase to manually engineer an interface that the agent inter-
acts with [1]–[4], [6]. This involves implementing a standard
environment interface, such as Gymnasium [13], to define an
action space and translations from actions into in-game events.
While such an approach is effective, it also requires a non-
trivial amount of engineering work [6], [10] and knowledge
about the game, which represents a barrier to the adoption
of reinforcement learning agents in games. An alternative to
such manual engineering is to use generic (but imprecise)
actions. For example, the use of reinforcement learning with
Atari games [14], [15] often involves a generic discrete action
space that covers all 18 of the device input combinations. Work
on general computer control with reinforcement learning [16]
uses a generic action space that covers all common keyboard
and mouse events. However, such generic action spaces with
a large number of actions are generally more difficult to train
with or give worse agent performance.

In this paper, we propose program analysis as a solution
for automatically determining a precise action model when
deploying reinforcement learning in existing games. With such
an approach, we automate part of the involved engineering
effort. Furthermore, such an analysis automatically adapts to
changes in the game code, which addresses a key challenge
of games frequently changing during development [6]. We
describe an approach, based on the program analysis technique
of symbolic execution, to analyze the user input handling logic



1 class PlayerController : MonoBehaviour {
2 ...
3 void Update() {
4 if (Input.GetAxis("Horizontal") > t)
5 Move(Vector2.right);
6 if (isOnGround && Input.GetButton("Jump"))
7 ApplyForce(Vector2.up);
8 }
9 ...

10 }

Listing 1. Example of typical user input handling logic in a Unity game

in the game code and automatically obtain discrete action
spaces for games. We implemented our technique for the Unity
game engine and considered the widely used Proximal Policy
Optimization (PPO) [17] and Deep Q Learning (DQN) [14]
algorithms. In a study with a diverse set of seven Unity games,
we found that our approach significantly out-performs generic
action spaces, and performs on par with the ideal scenario of
manually specified action spaces.

II. BACKGROUND

A. Input Handling In Games

In games, the player actions are typically defined through
input-handling logic in the code that reads the user’s input
device. We investigate the automated analysis of such code
to define appropriate action spaces for reinforcement learning.
An example of input-handling code for the Unity game engine
can be found in Listing 1. Here, the Update() method
defines game logic that is repeatedly executed over time.
On line 4, the call to Input.GetAxis("Horizontal")
checks the state of the user input device that is mapped to the
“Horizontal” axis and returns a floating point value. Similarly,
on line 6, the call to Input.GetButton("Jump") checks
the state of the input device mapped to the “Jump” button.
However, in this case, this action is only available when the
isOnGround flag is active.

B. Defining Game Action Spaces

The actions that a reinforcement learning agent can take are
typically described with an action space. In games, commonly
used action spaces include the following [11]:
• Discrete: One action among N actions is chosen by the

agent at each step of the game.
• Multi-Discrete: Multiple discrete actions from among M

discrete action spaces are chosen at each step of the game.
• Continuous: The action is represented as a real number

or vector of real numbers.
Prior work has shown that the specification of the action

space affects the performance of reinforcement learning agents
[11]. Continuous actions have been shown to be more difficult
to learn than discrete ones, and reducing the number of
actions can also be crucial to enable learning [11]. Some
algorithms can only accept certain kinds of action spaces. For
example, Deep Q Learning [14] can only work with discrete

Fig. 1. System diagram of our approach for defining action spaces

action spaces. In games where the set of valid actions varies
depending on the game state, the agent performance can be
improved with an action mask that informs the agent of the
invalid actions [11], [12]. Given the challenges of learning
continuous actions, we focus on discrete action spaces and
discretize any continuous actions.

III. METHODOLOGY

Our approach automatically determines an appropriate ac-
tion space for an existing game via analysis of the game code.
Figure 1 gives an overview of our proposed automated action
analysis. First, prior to gameplay, the game code analysis
(Section III-A) determines a discrete action space for the
game (Section III-B), along with the action validity conditions
and device inputs needed to perform the actions. The validity
conditions are used to generate an action mask (Section III-C)
to ensure the agent policy only chooses valid actions. When
an action is chosen by the agent policy, the device inputs are
resolved based on the current game state (Section III-D) and
finally simulated onto the game.

A. Game Code Analysis

First, we use program analysis to exhaustively determine
all the player actions available in the game. This includes
the game state conditions under which the actions are valid,
and the device inputs needed to perform them depending on
the game state. This analysis targets the user input handling
logic in the game code, such as that shown in Listing 1.
Prior work [18]–[20] has demonstrated that the technique
of symbolic execution provides an effective framework with
which to conduct this kind of analysis that is applicable to
typical commercial game engines such as Unity. With this
approach, a precise set of conditions is determined for the
different execution paths through the game loop [18].

The key insight underlying the analysis is that the possible
player actions are implied by the execution paths through the
user input handling logic of the game code. Each of these
execution paths corresponds to a particular combination of
user input and game state conditions. With symbolic execution,
the possible execution paths of a program can be explored by
representing the inputs with symbols. We can then determine
path conditions for each execution path of the program, which
consist of a conjunction of conditions that were true at each



branch point in the program. By representing the game state
and user input variables with symbols, we can obtain the
conditions under which each action occurs. For example, in
Listing 1, a path condition that corresponds to an action of
moving right and jumping would be:

Input.GetAxis("Horizontal") > t ∧
isOnGround ∧ Input.GetButton("Jump")

(1)

This path condition consists of user input variables (starting
with Input...) and game state variables (e.g. isOnGround).
We define each action as an execution path through the user
input handling logic. Under this formulation, an action is valid
when the path condition is satisfiable (i.e. the execution path
is feasible), and the solution to the path condition gives the
device inputs needed to perform the action. Each of these
actions take place over a single step of the game, since they
correspond to a single iteration of the game loop.

The symbolic execution approach provides a natural method
for discretizing continuous actions, which can improve training
performance [11] and enable compatibility with algorithms
that only support discrete action spaces (such as DQN).
Continuous actions are defined by floating point input APIs
such as Input.GetAxis or Input.mousePosition.
When such an input is encountered, the execution forks into
multiple new states, each having a constraint covering some
part of the input range. For example, when Input.GetAxis
at line 4 is reached, the execution forks into three states
having path conditions covering the general cases of interest:
negative (Input.GetAxis("Horizontal") < 0), zero
(Input.GetAxis("Horizontal") = 0), and positive
(Input.GetAxis("Horizontal") > 0). These are the
general cases that exhibit distinct behaviors in most games,
and we use the same strategy for all the games. Simi-
larly, if the execution encounters a mouse position input
(Input.mousePosition), the execution forks into a grid
of states, each bounding the mouse position within a cell of the
grid. In our implementation we use a grid size of 4x4, having
found that this size is suitable for interacting with the games in
our dataset. This value can be easily tuned for games needing
more exact mouse movement. Doing this discretization is
especially important because continuous inputs can be used
in ways for which it is difficult to obtain exact constraints.
For example, mouse position inputs are frequently used in
ray cast operations implemented in the game engine internals.
This approach addresses such cases, producing a generic set
of actions covering the general cases of interest, even if exact
constraints cannot be obtained.

A key challenge in the practical application of symbolic
execution is the exponential growth in the number of paths
with respect to the number of branch points in the program
[21]. However, for the action analysis only code that is relevant
to the handling of user inputs needs to be considered. Prior
work has demonstrated that techniques such as call graph
analysis, data-flow analysis, and program slicing can be used
to automatically determine the parts of code relevant to user

input handling [18], [19]. We use the same combination of
techniques to enable our analysis to scale to complex games.

B. Action Space

Given the analysis results as a set of path conditions over
game state and user input, we can determine an appropriate
action space that is suitable for defining the agent’s policy
network architecture (number of outputs). Given a set of path
conditions P , we can obtain a discrete action space A by
associating each action a ∈ A with a path condition p ∈ P .

A key consideration when defining the action space is
that the analysis may generate many redundant no-operation
(no-op) actions, where all the device inputs (e.g. keyboard
and mouse) are in a released state. This is due to path
conditions either not having any constraints on user input,
or the constraints on user input always giving a zero value
under all game states. To address this, we remove all redundant
no-op actions produced by the analysis, such that we just
have one no-op action as the first action in the discrete
action space. Given a path condition p ∈ P with a set of
input variables I = {i1, i2, . . . , in}, we consider p a no-op
action if it does not have any input variables (|I| = 0) or
provably always generates zero values as the solution, such
that p ∧ ¬(i1 = 0 ∧ i2 = 0 ∧ · · · ∧ in = 0) is determined
unsatisfiable by an SMT solver. Aside from no-op actions, the
analysis may also produce actions with similar or equivalent
inputs, however we have found that in general it is challenging
to find automatic action space transformations that consistently
retain or improve performance across a variety of games.

The overall outcome is a discrete action space of size N ,
with a no-op action as the first action and the rest of the actions
being associated with path conditions. A deep reinforcement
learning agent using this action space would typically then
generate a policy network with N outputs. Because the
underlying symbolic execution considers all execution paths
through the input-handling code, this covers all combinations
of device input. Furthermore, as discussed in Section III-A, the
discretization of continuous inputs is handled by the symbolic
execution as well and generates a set of actions suitable for
covering the cases of interest.

C. Action Mask

Certain actions are only available under certain game state
conditions. For an action with path condition p to be valid,
firstly there there must be at least one active instance of the
associated object type. Secondly, the condition p must be
satisfiable under the current game state. It is possible that
certain actions will never be valid if their associated object
type is never active during gameplay. To handle the variability
of valid actions during gameplay, we employ action masking,
where the agent’s policy is forced to evaluate invalid actions
to low values or probabilities [12].

To compute the valid actions in the agent’s current state, first
a subset of path conditions P ′ ⊆ P is computed, where each
path condition has at least one active instance of its associated
object type. Then, an action associated with path condition



p ∈ P ′ is considered valid if p is satisfiable under the agent’s
current game state. Because there can be hundreds of path
conditions, testing satisfiability directly with an SMT solver
during gameplay is too inefficient to preserve the real-time
performance of games. Therefore, we use an approximation
proposed in previous work [19], where each path condition is
compiled into an approximate action validity function that can
be quickly checked. Each path condition p is is split into the
parts dependent on game state, pg , and the parts dependent
on user input, pi. Then, each pg is compiled to a boolean
function that is embedded together with the game code. For
the example path condition in Equation 1 in of Section III-A,
pg is isOnGround, so pg would be compiled to a boolean
function that reads the field isOnGround. During gameplay,
the action mask has a true value for all actions whose
associated action validity function evaluates to true in the
agent’s current game state, and false for all other actions.

D. Action Device Inputs

When the agent chooses an action, the appropriate device
events need to be simulated onto the game. Given the asso-
ciated input condition pi, these can be determined by adding
the concrete value of all game state variables and solving the
condition with an SMT solver. For the example in Equation
1 of Section III-A, the input condition depends on the game
state variable t. Suppose t is 0.1 in the agent’s current state.
Then, the constraint t = 0.1 would be added and the condition
solved with an SMT solver, giving a solution such as:

Input.GetAxis("Horizontal") = 1.0
Input.GetButton("Jump") = true

(2)

The input variables in this solution would then be looked up
in the game’s input configuration to map the solution values to
the actual input device bindings needed to perform the action.

A common case to consider is that a path condition may
not include all the input variables used in the entirety of the
game code. This could happen if a method returns early, or
if different object types read input from different parts of
the input device. For this reason, when simulating the device
inputs, all other parts of the input device that are not part
of the solution are reset. For the example in Equation 2, all
keys not associated with either the “Horizontal” axis or the
“Jump” button would be released. This ensures that actions
only affecting part of the input device do not remain stuck.

Finally, a key technical challenge is in simulating the device
inputs. Some game engines (including Unity) do not offer
the capability to simulate device events. To enable this, our
implementation automatically substitutes input APIs with a
version that allows simulated events.

IV. EVALUATION

We evaluated our approach in a variety of Unity games.
Firstly, we compared against generic action spaces that cover
all common keyboard and mouse actions suitable for interact-
ing with most games. Secondly, we compared against manu-
ally specified action spaces, representing the ideal scenario of

a developer investing effort to define an action model. Finally,
we ran an ablation study to evaluate the impact of the no-
op removal (Section III-B) and input resetting (Section III-D)
treatments. We considered the following research questions:

1) RQ1. How do reinforcement learning agents using the
action analysis perform compared to those using generic
action spaces?

2) RQ2. How do reinforcement learning agents using the
action analysis perform compared to those using manu-
ally specified action spaces?

3) RQ3. What is the effect of the proposed no-op removal
and input resetting treatments on the resulting perfor-
mance of the reinforcement learning agents?

A. Reinforcement Learning Setup

In our evaluation, we considered the Proximal Policy Opti-
mization (PPO) [17] and Deep Q Learning (DQN) [14] deep
reinforcement learning algorithms. PPO has been widely used
for video game testing and evaluation [3]–[7], [9]. DQN is a
classic approach capable of learning to play video games [14]
and has been used for video game testing as well [10].

We used screenshots as inputs to the policy networks for
both PPO and DQN, which are both capable of learning
with pixel inputs [3], [14]. Screenshots are a generic state
representation that can be re-used across all the games. By
holding the state representation constant, we ensured that the
differences observed are due to our independent variable (the
action spaces) and not a particular state representation. The
policy networks for both PPO and DQN are convolutional
neural networks (CNNs). As in other works [10], [14], the
input to the networks is the last four game screenshots stacked,
resized to 84x84, and converted to grayscale. Additionally,
we implemented action masking [12], such that the network
outputs are set to a very low value for the invalid actions.

During training, each chosen action is held for four in-game
frames. Each round of training was run for 100,000 steps
(400,000 frames), which took 1-2 days of real time due to the
overhead of the experiment setup. Each environment episode
was limited to 300 steps (1,200 frames), after which the game
resets. For DQN, the epsilon value was annealed from 1.0
to 0.05 during the first third of training (33,000 steps), after
which it was held at 0.05. All training was repeated ten times.
The experiments were run on a Linux cluster, enabling us to
run much of the training in parallel.

B. Game Selection

Our evaluation included seven Unity games with vari-
ous genres, code complexity, and input types. The games
were sourced from a combination of open-source projects on
GitHub and student projects from a semester-long graduate
game development course. All the games are single player
games (no networking/online features) with source code avail-
able. Games were excluded from consideration if they were
not compatible with our action analysis implementation due to
the use of unsupported input APIs, or if they were too resource
intensive to run on a single node in our cluster setup. We also



TABLE I
GAMES USED IN THE EVALUATION. THE “LOC” COLUMN GIVES THE LINES OF CODE EXCLUDING THIRD-PARTY DEPENDENCIES. THE “RL REWARD

FUNCTION” COLUMN GIVES THE REWARD FUNCTION DEFINED FOR THE GAME TO BE MAXIMIZED BY REINFORCEMENT LEARNING.

ID Source Genre Description LOC Input Type RL Reward Function
G1 GitHub Platformer Super Mario Bros remake 2107 Keyboard Only Positive reward for moving right and acquir-

ing powerups. Penalty for damage.
G2 GitHub Maze Pac-Man remake 1902 Keyboard Only Positive reward for gaining score and ac-

quiring powerups. Penalty for dying.
G3 GitHub Puzzle 2048 remake 699 Keyboard Only Positive reward for gaining score.
G4 GitHub Puzzle Bubble Shooter game 1290 Mouse Only Positive reward for gaining score.
G5 Student Projects Maze Navigate a maze with en-

emies to reach the goal
4990 Keyboard Only Positive reward for getting closer to goal

and acquiring pickups. Penalty for damage.
G6 Student Projects Maze Acquire pickups to unlock

doors and reach the goal
9694 Keyboard Only Positive reward for getting closer to

goal, acquiring pickups, and gaining score.
Penalty for taking damage or dying.

G7 Student Projects Platformer Collect stars and reach the
goal by placing platforms.

2240 Keyboard + Mouse Positive reward for getting closer to goal,
acquiring pickups, and gaining score.

excluded games if we were not able to identify an appropriate
reward function based on prior work, or if the training could
not improve over time for any of the approaches to defining
action spaces in our initial experiments (i.e. reinforcement
learning was not an appropriate solution for the game).

The complete set of games used in our evaluation is listed
in Table I, indicating the source of the game, its genre, de-
scription, code complexity in terms of lines of code (excluding
third-party dependencies), and type of input device. The last
column gives the reward function that we defined for the
game to be maximized by the reinforcement learning, which
corresponds to effective playing performance in the game.
While these games generally have a smaller scale than modern
commercial games, they are complete games having a variety
of fully implemented mechanics and features, and employ the
same input-handling patterns as commercial games.

Running the symbolic execution on each game took an
average of 29.8 seconds (minimum 3.57 sec, maximum 100.6
sec), and the overhead incurred at run time for resolving
actions was on average 16.3 milliseconds (minimum 11.6 ms,
maximum 21.7 ms). We found that this was acceptable for
preserving the real-time performance of the games.

C. Action Spaces

In the evaluation, we compared several approaches to defin-
ing the game action spaces:

1) Action Analysis: This is a discrete action space au-
tomatically determined by our action analysis, where
each action corresponds to an execution path through
the input-handling code as described in Section III-B.
An action mask is generated to indicate the validity of
each action as described in Section III-C.

2) Manual (Multi-Discrete): We manually specified the
game’s action space based on an inspection of the
game’s code and gameplay. This represents an ideal
scenario where the developer has invested effort into
implementing an interface. We specify a multi-discrete
action space, discretizing any continuous actions (axis/-
mouse) to cover all the primary cases. This approach
is consistent with the guidelines given in prior work on

TABLE II
ACTION SPACE SIZES FOR OUR AUTOMATED ACTION ANALYSIS AND THE
MANUAL SPECIFICATION. COMPLETE ACTION SPACE SIZES ARE ON TOP,
AND AVERAGE VALID ACTION COUNTS DURING GAMEPLAY ARE BELOW.

Game Action Analysis Manual (MD) Manual (D)
G1 157 3, 2, 2 12

10.54 2.85, 1.93, 1.18 7
G2 39 3, 3 9

27.66 3, 3 9
G3 17 3, 3 9

10.98 2.56, 2.13 5.96
G4 5 3, 2 6

4.73 3, 1.54 5.05
G5 14 3, 3, 2, 3 54

9.30 2.77, 2.77, 1.04, 1 7.49
G6 11 3, 3, 2 18

9 3, 3, 1 9
G7 46 3, 3, 2, 3, 34 1836

21.54 3, 3, 1.55, 1, 17.34 203.18

action space shaping [11]. As is typical for reinforce-
ment learning environments, each action is a basic action
taking place over a single step (e.g. move left/right,
jump). We also manually specified action masks for
actions only available under certain conditions.

3) Manual (Discrete): Some works intentionally use dis-
crete action spaces [3], and some reinforcement learning
algorithms only work with discrete action spaces (e.g.
DQN). Therefore, we also compare against a discrete
variant of the manual specification by automatically
converting the multi-discrete space to a discrete one
consisting of all combinations of actions.

4) Generic (Multi-Discrete): We defined a multi-discrete
action space consisting of common keyboard and mouse
actions that is suitable for interacting with most games.
This represents a generic action model that covers the
entire input device, such as that seen in work on general
computer control [16] or Atari game playing [14]. It does
not require engineering effort per game, but it is large
and imprecise. The first part of the space consists of 101
discrete spaces of size 2 for keyboard keys (excluding
some uncommon keys, such as the Print key), each
representing the held or released state of the key. Next



(a) Training with Proximal Policy Optimization (PPO) (b) Training with Deep Q Learning (DQN)

Fig. 2. Mean episode reward over time across all the games. Rewards for each game are normalized to [0, 1] prior to being averaged.

TABLE III
FINAL MEAN EPISODE REWARDS PER GAME FOR PPO. STATISTICALLY SIGNIFICANT DIFFERENCES ARE BOLDED. WHERE THE ACTION ANALYSIS HAD

SIGNIFICANTLY BETTER PERFORMANCE, (�) INDICATES p < 0.01 AND (<) INDICATES p < 0.05.

Game Action Analysis Generic (MD) Generic (D) Manual (MD) Manual (D)
G1 15.3 ± 4.28 5.52 ± 1.48 (�) 2.15 ± 0.06 (�) 4.57 ± 1.55 (�) 4.21 ± 0.6 (�)
G2 99.4 ± 21.08 69.9 ± 6.81 (�) 75.7 ± 16.18 (<) 91.14 ± 28.1 105.25 ± 35.16
G3 183.41 ± 33.2 122.56 ± 17.39 (�) 138.88 ± 18.29 (�) 139.01 ± 19.13 (�) 180.58 ± 29.94
G4 371.2 ± 96.42 232.45 ± 30.64 (�) 229.4 ± 46.03 (�) 297.25 ± 40.23 335.3 ± 43.26
G5 9.43 ± 0.94 5.0 ± 1.18 (�) 3.5 ± 0.9 (�) 9.38 ± 1.7 9.29 ± 1.65
G6 26.61 ± 5.26 29.04 ± 3.77 25.24 ± 5.49 20.35 ± 7.17 25.44 ± 3.09
G7 186.84 ± 17.47 167.22 ± 25.42 133.53 ± 5.6 (�) 201.28 ± 19.26 177.36 ± 19.41

there are two discrete spaces of size 3 for horizontal
(left/center/right) and vertical (bottom/center/top) mouse
position. Last is a discrete space of size 2 for the left
mouse button state. These actions are always valid.

5) Generic (Discrete): We also defined a discrete variant of
the Generic action space. The set of all combinations of
the generic multi-discrete space is intractably large, so
we instead defined a smaller variant that exercises input
events individually. The first action is a no-op action that
releases all keyboard and mouse buttons. Next there are
101 actions for holding down a single key, then nine
actions for mouse cursor movement within a 3x3 grid.
Lastly, there are another nine actions for moving the
mouse cursor together with the left mouse button held.
Overall this gives 120 actions that are always valid.

In Table II we give the action space sizes and average
valid action counts during gameplay (branching factor). For
the action analysis we can see that, although the complete
sizes may be large, during gameplay the actual number of
valid actions is often much smaller.

D. Experiment Results

In Figure 2, we visualize the overall trends with aggre-
gate graphs of mean episode rewards across all games. The
rewards were normalized with inter-algorithm normalization
[15], where for each game we computed the minimum episode
reward rmin and maximum episode reward rmax obtained by
any of the approaches, then rescaled the range of values to
[0, 1]. In Tables III and IV we present the average and standard
deviation of the final mean episode reward for each game
across ten repetitions of training. A two-tailed Mann-Whitney

TABLE IV
FINAL MEAN EPISODE REWARDS PER GAME FOR DQN. WHERE THE

ACTION ANALYSIS HAD SIGNIFICANTLY BETTER PERFORMANCE, (�)
INDICATES p < 0.01. WHERE IT PERFORMED SIGNIFICANTLY WORSE,

(�) INDICATES p < 0.01 AND (>) INDICATES p < 0.05.

Game Action Analysis Generic (D) Manual (D)
G1 1.59 ± 0.93 0.05 ± 0.06 (�) 3.05 ± 1.69
G2 84.69 ± 22.06 29.69 ± 13.36 (�) 181.76 ± 31.55 (�)
G3 86.84 ± 10.44 2.07 ± 0.67 (�) 95.68 ± 7.03
G4 235.6 ± 76.47 24.95 ± 11.75 (�) 296.25 ± 61.1 (>)
G5 3.98 ± 1.61 1.18 ± 0.55 (�) 3.85 ± 1.81
G6 22.37 ± 12.19 17.11 ± 10.2 27.47 ± 9.28
G7 69.91 ± 22.44 12.38 ± 9.53 (�) 82.39 ± 9.97 (>)

U test is performed between the samples from the action
analysis and the other approaches being compared against. We
do not employ a mathematical multiple-comparison correction,
but rather we present the outcome of all the tests conducted
and examine the frequency with which significant results were
found. We highlight those results where statistical significance
was established at either p < 0.01 or p < 0.05. We expect that
frequently occurring outcomes would generalize well.

1) RQ1: Action Analysis vs Generic: For the vast majority
of games, the action analysis gives superior performance to the
generic action spaces for both PPO and DQN. In the aggregate
graphs of Figure 2 we can see the action analysis achieve
superior performance compared to the generic action spaces.
In Tables III and IV we see that for the vast majority of games,
the action analysis achieved significantly better performance
compared to the generic action spaces. Overall, we conclude
that the action analysis is a superior option compared to the
use of generic input device action spaces, illustrating the value



TABLE V
RESULTS OF THE ABLATION STUDY. “NR” REFERS TO NO-OP REMOVAL AND “IR” REFERS TO INPUT RESETTING.

Game All Off (PPO) Only IR (PPO) Both NR and IR (PPO) All Off (DQN) Only IR (DQN) Both NR and IR (DQN)
G1 15.84 ± 5.05 17.3 ± 2.98 15.3 ± 4.28 1.62 ± 0.9 1.87 ± 1.22 1.59 ± 0.93
G2 87.2 ± 16.07 93.74 ± 11.78 99.4 ± 21.08 84.26 ± 20.19 76.21 ± 19.75 84.69 ± 22.06
G3 134.88 ± 16.77 180.14 ± 41.22 (>) 183.41 ± 33.2 (�) 44.87 ± 7.85 76.94 ± 12.25 (�) 86.84 ± 10.44 (�)
G4 312.65 ± 62.84 394.1 ± 103.67 371.2 ± 96.42 103.1 ± 62.31 165.15 ± 93.82 235.6 ± 76.47 (�)
G5 8.43 ± 1.9 9.53 ± 1.87 9.43 ± 0.94 4.4 ± 1.24 3.55 ± 1.43 3.98 ± 1.61
G6 26.39 ± 6.47 23.97 ± 7.85 26.61 ± 5.26 24.21 ± 4.62 18.84 ± 11.08 22.37 ± 12.19
G7 179.88 ± 25.84 194.2 ± 19.03 186.84 ± 17.47 65.22 ± 15.81 76.01 ± 16.49 69.91 ± 22.44

of having precise action models.

2) RQ2: Action Analysis vs Manual: For PPO, we observe
that the action analysis performs on par with or better than the
manually specified action spaces. In Figure 2a, we see that on
average the action analysis surpasses both manual variants. In
Table III, we see that for the vast majority of games there is no
significant difference between the action analysis and manual
specifications, indicating similar performance. An outlier was
the game G1, where the action analysis achieved significantly
better performance. We conclude that for the PPO algorithm
our approach is effective, performing on par with or better
than typical manual specifications. Given the widespread use
of PPO and that our approach is fully automated, this finding
highlights the strengths of our program analysis solution.

For DQN, we find that for some games, the manual specifi-
cation has an advantage over the action analysis. In Figure 2b
we see the Manual action space achieve better performance
on average than the action analysis, and in Table IV we
see several games where Manual achieved significantly better
performance (G2, G4, and G7). An observation here is that
the game where Manual had the biggest advantage (G2) was
the one where the average number of Manual actions was
about three times smaller than that of the action analysis (see
Table II). However, evidently action count is also not the only
factor, since for G4 and G7 the action analysis had a similar
or smaller size but still performed worse. Nevertheless, for
over half the games (4/7) we also observe that there is no
significant difference between the action analysis and manual
specification performance, indicating similar performance. We
conclude that for DQN, the action analysis gives performance
competitive with manual specification, but some games may
still benefit from hand-crafted action spaces.

3) RQ3: Action Analysis Treatments: In this work we
proposed two treatments to the action analysis to make it more
amenable for reinforcement learning. First, we proposed the
redundant no-op removal in Section III-B, which identifies
and combines all no-op actions into a single one. Across
the seven games, we found that this treatment reduces the
action space size by an average of 19.7% and the number of
valid actions per state by 11.3%. Secondly, in Section III-D,
we proposed identifying and resetting all inputs that are not
present in the path condition of the action being performed to
address the issue of unintended sticky actions. We examined
the impact of these two treatments by conducting an ablation
study, repeating the evaluation procedure with variants of the

analysis having some or all of these treatments disabled.
Table V gives the final mean episode rewards and statistical

tests for the variants. The no-op removal alone did not lead
to any significant difference in performance, so its column
is omitted. However, we can see that combining it with
input resetting gave the strongest improvement in performance.
Although these improvements only manifest themselves in
a few games, we observe only positive changes among the
significant differences in performance, so we conclude that
including both analysis treatments is valuable when deploying
reinforcement learning with the action analysis.

V. RELATED WORK

A few prior works have applied program analysis tech-
niques for determining game action models. Bethea et al. [20]
proposed a program analysis technique for cheat detection.
Their approach also uses symbolic execution, but they gen-
erate different kinds of constraints that are not suitable for
determining the validity and device inputs of actions as we
do. Feldmeier et al. [22] proposed a test generation technique
for Scratch games that evolves neural networks. In their work,
they perform pattern matching on syntax trees to identify
Scratch blocks that listen for user input events in order to
automatically specify the network outputs. However, such
pattern matching is insufficient for commercial game engines
such as Unity, where action validity conditions and input API
parameters can be arbitrary dynamic expressions expressed in
code, necessitating the symbolic execution approach that we
propose. Nevertheless, their work illustrates another applica-
tion of automated action space analysis for video games.

Volokh et al. [18], [19] proposed the symbolic execution
approach that we build on in this work, however their focus
was on maximizing the state and code coverage of automatic
exploration approaches for video games, which does not
necessarily correspond to better game playing performance. In
our work we proposed novel techniques and transformations
for determining action spaces specifically with the aim of
maximizing the game playing performance (episodic reward)
of reinforcement learning agents.

More broadly, the research area of Automated Reinforce-
ment Learning (AutoRL) [23] aims to automatically determine
effective reinforcement learning configurations, including state
and action representations, reward functions, and network
architectures. However, existing work in this field typically
employs learning or search-based approaches. Our use of



program analysis to identify appropriate action spaces is a
novel direction based on software engineering methodologies.

Several works have considered the effect of action space for-
mulation on the performance of reinforcement learning agents.
Kanervisto et al. [11] considered different approaches to
shrinking and transforming action spaces, such as by removing
or discretizing actions. They found that such transformations
can be crucial for enabling reinforcement learning agents to
learn. Huang et al. [12] demonstrate the importance of invalid
action masking as the number of invalid actions increases.
Both of these findings motivate the need for precise action
models in reinforcement learning.

VI. CONCLUSION

In this work we have proposed the use of automated
program analysis for determining precise action models when
deploying reinforcement learning in games. We implemented
our technique for the Unity game engine and evaluated its
performance across a variety of different existing games with
the PPO and DQN reinforcement learning algorithms. We
found that agents using the resulting action spaces achieved
significantly better performance than those using generic ac-
tion spaces, and perform on par with the ideal scenario of
manually specified ones. We conclude that such an approach
is practical and effective for automatically specifying action
spaces. Our contribution takes a step towards simplifying the
deployment of reinforcement learning in existing games, an
increasingly important endeavor as it finds new applications
for game development, testing, and analysis.
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